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Activated drift motion of a classical particle
with a dynamical pinning effect
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Abstract. A one dimensional trap model for a thermally activated classical particle is introduced to si-
mulate driven dynamics in presence of “ageing” effects. The depth of each trap increases with the time
elapsed since the particle has fallen into it. The consequences of this dynamical pinning are studied, and
velocity-force characteristics are numerically obtained. A special attention is paid to the situation where
the particle is pulled with a spring to ensure a finite average velocity. In the low velocity regime, the
presence of a broad distribution of trapping times leads to suppression of linear response, replaced by a
threshold or by sublinear dynamics. A regime of strong fluctuations is obtained when the particle is driven
at intermediate velocities.

PACS. 05.40.+j Fluctuation phenomena, random processes, and Brownian motion

1 Introduction

The out-of-equilibrium dynamics of glassy systems is a
widely open subject. An important topic concerns models
for which a spontaneous ageing behavior competes with
an external field. This article aims to study a realization
of the above paradigm in a simple “friction” experiment
where the two main features – ageing and external forc-
ing – are present. For this purpose, a stochastic process
describing a classical particle in a one-dimensional pin-
ning potential is defined. The pinning potential consists of
identical traps with time-dependent depths. The barriers
between two neighbouring traps therefore increase with
time in order to simulate ageing effects, and the hopping
rate between traps is based on Arrhenius dynamics. Some
physical justifications for such time-dependent barriers are
exposed in Section 2. Indeed, by choosing adequately the
time dependence of the trapping potential, one can ac-
count for anomalous slow diffusion situations related to
broad algebraic distributions of waiting times and leading
to glassy behaviors [1,2]. One can alternatively consider a
simpler case where the barriers increases from a short-time
value to a larger long-time value and discuss the related
dynamical consequences.

Our main purpose is to understand the driven
dynamics of this system in the situation where the av-
erage velocity v is non zero. A quadratic potential moving
at velocity v is therefore added, acting in a way similar
to a spring pulling a body in a friction experiment. The
mean spring extension defines the friction force F . The
relation between v and F is called the “Velocity-Force”
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characteristics, and is the central output for such a friction
experiment. Other quantities of interest will be monitored
like the distribution of waiting times between hops or the
histogram of the “spring lengths”. In some situations, the
time-dependent pinning potential is found to enhance the
fluctuations of the particle position.

The basic feature of this model consists in a com-
petition between the “ageing” pinning coming from the
traps, and the renewal due to the driven dynamics. It re-
sults in a strongly non-linear v − F characteristics for a
wide intermediate velocity regime. The more extreme case
of logarithmic growing barriers leads to a non-ohmic be-
haviour at low velocity, typical of glassy systems. In the
latter case, a naive, “mean-field like”, regularization with
a characteristic interruption time tc(v), fails in describing
the low-velocity properties of the model. The limit v → 0
indeed appears to be singular and involves large pinning
times ∼ 1/v.

Section 2 provides physical justifications of the model,
detailed in Section 3. A physical application is discussed.
Section 4 focuses on the velocity-force characteristics in-
duced by logarithmic growing barriers. Then, Section 5
studies some consequences of rapidly growing barriers on
the particle’s dynamics.

2 A review of mechanisms generating
an effective time dependent pinning potential

2.1 A time dependent pinning potential

Many disordered systems like spin glasses, pinned random
manifolds, diffusing particles in random media, involve a
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disordered energy landscape. In such systems, thermal ef-
fects, – diffusion and activation – compete against pinning
effects. At low enough temperature, the out-of-equilibrium
dynamics is usually governed by activated barrier cross-
ings in the configuration space. When the distribution of
energy barriers is broad, the time scale for reaching a ther-
mal – Boltzmann – equilibrium may diverge with the size
of the system.

By following a particle during its out-of-equilibrium
dynamics, one can attempt to define a function of time,
with dimension of an energy, as the mean (or typical)
height of the barrier that the system has to overcome,
in order to expand further. This function “H(t)” will be
the starting point for this phenomenological approach of
driven dynamics.

For instance, many aspects of the slow thermal diffu-
sion of a particle in a one-dimensional quenched random
force field, first introduced by Sinäı, have been partially
reinterpreted as the consequence of such effective barriers,
slowly increasing with time [1]. The random force gener-
ates a pinning potential – in 1 dimension – with unbound
local extrema, and the particle has to overcome higher and
higher barriers in trying to reach its thermal equilibrium.
Let tw be the time interval elapsed since the beginning
of the diffusion process, or waiting time. After tw, the
particle is shown to be at equilibrium within a restricted
area bounded by a barrier of height H(tw) ∼ T ln(tw) [1,
3]. Such a growing effective barrier induces a strong de-
pendence in tw, or ageing, for the response and diffusion
properties of the particle, together with an “anomalous”
slow diffusion behavior. A generalization to other types of
correlated disorder potentials leads to a variety of inter-
esting regimes with sublinear characteristics [4,5].

In a related way, the ageing properties of a particle dif-
fusing in a high dimensional phase space within traps with
exponentially distributed depths, were extensively stud-
ied, in relation with the magnetic relaxation of spin glasses
[2]. Again, after a waiting time tw, the particle stays in a
trap of typical depth H(tw) ∼ T ln(tw) [8]. Such a situ-
ation may occur for instance when describing the creep
of an extended object like an elastic manifold. The pin-
ning energy of this object increases as its internal degrees
of freedom wander and find favorable configurations. One
expects that the longer the object stays at the same place,
the larger its pinning energy will be. A well known exam-
ple involving pinning and motion of elastic lines concerns
the flux line problem in high Tc superconductors [9].

However, we must keep in mind that many other sys-
tems have slow relaxation properties which do not origi-
nate from a barrier pinning mechanism. This is the case
for a particle evolving in a high dimensional, random pin-
ning potential [6]. In this system, thermal activated pro-
cesses cannot explain the whole dynamics, because a non
trivial relaxation subsists when the temperature goes to
0. In such situations, the slow dynamics is attributed to
“entropic effects”, i.e the system has more and more dif-
ficulties to find favorable regions in its phase space, even
if it is not separated from them by any energy barrier

[7]. The existence of growing effective energy barriers is
therefore only a sufficient condition for ageing.

In what follows, Section 4 deals with particles diffusing
among traps whose depth increases like T ln(tw), leading
to a power law distribution for waiting times. In the last
Section 5, we focus on a less singular case where the time-
dependent barrier H(∞) <∞ does not diverge.

2.2 Detail of the friction experiment

In a friction experiment, one can either impose the ex-
ternal driving force F or the velocity drift v. In the first
case, F is a constant and one measures the mean position
〈x(t)〉 of the particle. One can alternatively pull the par-
ticle with a spring, with the other end moving at constant
velocity v. By doing so, one enforces only the average ve-
locity, and the force is then related to the mean extension
of the spring.

Some systems make these two procedures be inequiva-
lent. Some examples of random walks over random traps
which exhibits only a sub-linear response for the mean
displacement 〈x(t)〉 ∝ tα ; α < 1 are reviewed in [10]. On
the contrary, driving the particle with a spring ensures
that the average displacement x(t) is linear in time, in
other words the average velocity always exists, provided
the average is taken on sufficiently long times. Neverthe-
less, anomalous diffusion effects are still present and ap-
pears through the effective friction force, with the disap-
pearance of the usual linear regime at low velocity. The
study of such thermal “creep” for traps models general-
ized in a way to allow the particle to be driven by a spring,
will be the main purpose of Section 4. As far as possible,
results for the spring driven case will be compared to their
“constant force” counterparts.

On physical grounds, besides its “regularization” ef-
fect, the quadratic confinement potential may reflect more
complicated systems. For instance, when describing a set
of interacting particles, a crude mean-field elastic approx-
imation produces a “cage potential” (self-averaging con-
tribution of the whole system) which limits the excursion
of a given particle [16]. This potential moves at velocity v
with the center of gravity of the entire body. It can there-
fore be considered as a first step towards the incorporation
of interactions in anomalous diffusion problems.

As far as real “dry” friction experiments are concerned,
it is known that phenomena similar to ageing occur at the
contacts, and should be responsible for both the slow time
dependence of threshold forces and for the “stick-slip” mo-
tion [11,12]. Spring pulling and velocity dependent ageing
are already present in reference [11] but their model is de-
signed for a very different purpose. First, they introduce
a very strong ageing leading to a reentrant velocity-force
characteristics and unstable motion. Then, they consider
only a crude “mean-field” approach, called “adiabatic ap-
proximation”.

In what follows we focus on overdamped, thermally
activated motion, and especially on the low-velocity creep
motion. In contrast with the model of reference [11], the
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Fig. 1. Schematic illustration of the friction experiment.

ageing process is here described through a broad distri-
bution of trapping times, and the dynamics is simulated,
giving access to nonlinear creep characteristics as well as
to fluctuation effects. We provide details on the stochas-
tic process and consider carefully the whole distribution
of waiting times and spring lengths, which turn out to
have a crucial importance for understanding the physical
contents of this model: the dangers of a naive mean-field
approach are emphasized in Section 4.

3 Trap dynamics in presence of an external
driving force

We consider a saw-tooth potential made of equidistant tri-
angular wells (Fig. 1). The interval between two sites is
constant, equal to d. The particle is supposed to hop to-
wards its nearest neighbours sites, at a rate given by the
Arrhenius law. Whereas the conventional “reaction rate
theory” requires additional information about the specific
shape of the barrier, and provides corrective terms [13], we
will keep only the crude Arrhenius ratio. When a particle
falls into a well, this one starts to increase its depth, in or-
der to mimic an effective barrier H(t) growing with time.
The corresponding escape rate decreases accordingly, gen-
erating longer waiting times. A particle escaping from a
well, immediately falls into one of its nearest neighbours.
The particle is then always trapped, excepted during the
negligible transit delay over the barrier. The saw-tooth
potential is quite arbitrary, and the Arrhenius dynamics
insensitive to this specific shape.

An external potential – constant driving force or spring
traction – tilts the saw-tooth potential, reduces one of the
two barriers and increases the instantaneous escape rate.
The barrier is strongly reduced by any external bias, un-
til it vanishes at the critical force Fc(t) = 2H(t)/d. Let
h−(τ) and h+(τ) be the height of the left and right bar-
rier (Fig. 2). τ is the time elapsed since the arrival of the
particle in the occupied trap. By adding the left and right
“channels”, the total escape rate wtot reads, (β standing
for the inverse temperature T−1, ω0 for a trial frequency):

wtot(τ) =
ω0

2
exp(−βh+(τ)) +

ω0

2
exp(−βh−(τ)). (1)

In absence of external force, the left and right barriers
coincide and are set equal to H(t). By choosing H(t) ar-

D

1

Barrier h- = h10

20

Barrier h+ = h12

Fig. 2. Barriers h− and h+ (Sect. 3).

bitrarily, one can generate all the possible waiting time
distributions. H constant corresponds to an ordinary ac-
tivated diffusion over identical traps, leading to a diffusion
constant D and mobility µ:

D =
ω0d

2

2
exp(−βH) , µ =

βω0d
2

2
exp(−βH). (2)

An external force F changes H → {h+ = H − Fd/2;
h− = H + Fd/2}, leading to the constant force F escape
rate:

wtot(τ) = ω0 exp(−βH(τ)) ch

(
βFd

2

)
. (3)

A spring of stiffness k, with a head moving at constant
velocity v and the particle located at x(t) exerts a force
F (t) = kl(t) with l(t) = vt − x(t). The total escape rate
wtot(τ, l(τ=0)) reads:

ω1 exp[−βH(τ) + βH(0)]ch

(
βkd(vt− x(t))

2

)
, (4)

ω1 =

{
ω0 exp

(
−
βkd2

8

)
exp(−βH(0))

}
.

It’s essential to distinguish between the total time t and
the delay τ relative to the more recent jump of the particle,
which occurred at t−τ . Once the value of l(τ=0) is known,
at the time of arrival of the particle, (4) determines the
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probability distribution for the waiting time before the
next jump.

As expected, the external force affects the escape rate.
At large times, the hyperbolic cosine dominates the ex-
ponential term and make the particle eventually depin.
Depinning is fast when wtot becomes larger than 1, which
happens when the force is greater than the critical ratio
2H(τ)/d.

Let’s denote by Π(t) the probability for the particle
to stay within the well for a time τ longer than t. Π(t)
decays exponentially as:

Π(t) = exp

(
−

∫ t

0

ds wtot(s, l(s=0))

)
. (5)

By definition, π(t) = −dΠ(t)/dt is the probability dis-
tribution of waiting times. The knowledge of Π(t) allows
to perform “molecular dynamics” simulations by follow-
ing a procedure close to BKL [14]. In this simulation
scheme, one computes at each step, the waiting time τ
before the next jump. This is achieved by converting a
uniform random number r ∈ [0, 1] into τ(r), i.e. by in-
verting Π(τ) = r.

The stochastic process consists in a sequence of jumps,
labeled by i. Each jump has a random direction σi = ±1
(left or right), and a random waiting time τi ∈ [0,∞[.
The total time tn, particle position xn, and the spring
extension ln follow the recurrence equations: tn = tn−1 + τn

xn = xn−1 + σnd
ln = ln−1 − σnd+ vτn.

(6)

A fundamental difference distinguishes constant force and
spring friction experiments. In the first case, the waiting
times τi are statistically independent, while in the second
case, they are strongly correlated, because their proba-
bility distribution is conditioned by the spring extension
l(t), which varies slowly. For example, a long waiting time
extends the spring, and forces the next waiting times to
be shorter than the average. These correlations prevent
from performing a complete analytical study, and jus-
tify a numerical approach. By defining V = (βkdv)/2,
X(t) = (βkdx(t))/2, L(t) = X(t) − V t , ∆ = (βkd2)/2,
the cosine term becomes ch(V t + L(t)). A spring length
L(t) ∼ 1 means that the external force has reached its crit-
ical value Fc ' 2H/d. L(t) is piece-wise linear, increasing
during the pinning of the particle, and with discontinuities
−σi∆ at each jump. A small value of ∆ means that the
particle has many different traps accessible. At the oppo-
site, for ∆ ≥ 1, the spring forces the particle to occupy
only one given site or its nearest neighbours. This regime
has not been considered here.

Provided the temperature is not too low, ω−1
0 , ω−1

1 ,
and the characteristic time for the effective barrier are
of the same order and constitute a unique, microscopic,
time scale. We have restricted ourselves to this situation
(β ∼ 1). The only independent parameters of the model
turn to be: those defining H, the rescaled jump length ∆
and the “velocity” V ω−1

1 .

The mean friction force is given by

〈F 〉 =
2T

d
〈L(t)〉 , (7)

where brackets stand for the time average.

〈O〉 = limΘ→∞
1
Θ

∫ Θ
0
O(s) ds. The exact formulas for the

mean position L and its quadratic fluctuation L2 are:

〈L〉 = lim
n→∞

∑n
i=1 L(ti)τi + V τ2

i /2∑n
i=1 τi

·

〈
L2
〉

= lim
n→∞

∑n
i=1 L(ti)

2τi + L(ti)V τ
2
i + V 2τ3

i /3∑n
i=1 τi

·

There is no need to average over a quenched disorder in
this model, and simulations are notably simplified. We
stress however that the time averages mentioned above
may present important fluctuations from one realization
of the process to another. This is especially the case when
a broad distribution of trapping time is considered, and
the displacement x(t) as a function of time may exhibit
fluctuations as large as 〈x(t)〉 itself. Note that our nu-
merical work corresponds to spring pulling experiments,
thus trapping time distributions are regularized. We have
checked carefully that the time averages were well defined
and converged.

At each jump, the direction σn = 1 is chosen with
probability p(τn, tn−1) and σn = −1 with probability
1− p. We made the choice

p(τn, tn−1) =
exp(−βh+(τn))

exp(−βh+(τn)) + exp(−βh−(τn))
(8)

=
1

1 + exp[−2L(tn−1)− 2V τn]
·

Restricted to the case V = 0 and H constant, the above
choice fulfills the detailed balance equation, and the re-
sulting Boltzmann equilibrium distribution for l(t) is a
Gaussian with variance T/k.

One can demonstrate that the general case V = 0,
but H increasing, still leads to a stationary distribution
profile for l(t), provided the mean trapping time exists,
i.e. H must be a bounded or slowly increasing function of
time.

4 Large algebraic waiting time distributions

4.1 Definitions

It is well known that ageing effects appear when the wait-
ing time distribution decays like π(τ) ∼ τ−(1+α) and
α < 1. The following choice (τ1 = 1/ω1 is the reference
time scale):

Π(t) =

(
1 +

τ

ατ1

)−α
, π(t) =

1

τ1

(
1 +

τ

ατ1

)−(α+1)

,

(9)
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is obtained, following (5), with

βH(τ) = ln

(
1 +

τ

ατ1

)
, and (10)

wtot(τ) =
α

ατ1 + τ
· (11)

When a constant force F is applied, one has:

wtot( τ ) =

(
α

ατ1 + τ

)
ch(βFd/2). (12)

The effective exponent is no longer α, but α′(F ) =
α ch(βFd/2) and the hopping length d remains con-
stant. This picture is different from the one emerging from
the Sinäı model, where the force dependent exponent is
α(F ) = F/Fc (Fc is a given critical force), and the typi-
cal hopping length depends on F like d(F ) ∼ 1/F 2. This
latter phenomenology could be used as another starting
point instead of equations (3, 4, 6).

The behaviour of a system with H growing as above,
and a weak constant force F is just a particular case of
the “continuous time random walks” described in [10]. The
mean displacement 〈x(t)〉 of the particle turns out to be
in this case (disregarding prefactors):

〈x(t)〉 = N(t)dth

(
Fd

2T

)
(13)

〈x(t)〉 '
d 2

2T

(
t

τ1

)α
F, (14)

N(t) is the typical number of jumps during the time in-
terval [0, t], and functions of βFd/2 have been linearized
in the last equation. The sublinear dependence in time
means that the velocity is asymptotically 0.

Let us turn now to the system with a spring pulling the
particle at constant velocity v. The constant force result
(14) is helpless in this case. This is precisely a situation
where driving with a spring is inequivalent to driving with
a constant force. In this case, the broad waiting time dis-
tribution is cut when the spring depins the particle. A
cut-off time tc is defined as:

kl(tc) = kvtc = Fc =
H(tc)

d/2
, (15)

tc

ln (1 + tc/ατ1)
=

2

kβd

1

v
· (16)

4.2 A mean field approach

One can try to understand the creep behaviour of the
system by a mean field argument, by neglecting all the
fluctuations in the force and writing F = k 〈l(t)〉. Owing
to the regularization provided by the velocity, the mean
value of the waiting times exists and equals:

〈τ(v)〉 = τ1

(
tc(v)

τ1

)1−α

· (17)
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Fig. 3. Distribution of waiting times regularized by the ve-
locity. (α = 0.5). This curve H(ln t) has to be understood as
follows: the number of waiting times lying between t1 and t2 is
N(t1, t2) = N

∫ t2
t1
H(ln t)d ln t. (N is a normalization factor).

H(ln t) ∼ t−α.

Result (13) holds, and one can write a self-consistent equa-
tion for v, v � 1.

vt = F
d2

2T

1

tc(v)

(
tc(v)

τ1

)α
t, (18)

which, apart from a logarithmic factor, leads to
tc(v) ∼ 1/v and:

F =
2τ1
βd2

(
2

βkdτ1

)1−α

vα. (19)

The linearized case βFd/2 ≤ 1 implies α′ =
α ch(βFd/2) ' α (at weak velocity, the force does not
change much the value of α′). This mean field approach
gives a power law creep F ∼ vα. Unfortunately, it strongly
disagrees with numerical simulations.

The simulations were done, following the scheme of
equation (6), Section 2. Details on the computational sche-
me are deferred to the Appendix: the main difficulty comes
from the conversion of random numbers in waiting times,
and a trick is necessary to avoid computer time wasting.

4.3 Analysis of the numerical results

Figure 3 shows an histogram for the distribution of waiting
times with α = 0.5, at various velocities. The distributions
are clearly cut at tc(v). The constant slope −(1 + α′) in
the log-log plot shows that one has true power laws until
the cut-off. At intermediate velocities, α′ departs from its
0 velocity value, as expected.

Figure 4 shows the dependence of the v − F curve
in the exponent α. The characteristics have been found
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Fig. 4. Dependence of the v−F curve in the exponent α. The
closer to 1 is α, the more difficult is the convergence at low
velocities. ∆ = 0.005; V = 0.5βkd ranges from 4×10−8 to 0.1.

to be monotonic and increasing. For both α = 0.9 and
α = 1.3, the curves are presented with horizontal error
bars (which are very small for α = 0.5 and α = 0.7). They
give an estimate for the fluctuations between successive
runs. The convergence is all the more difficult to get that
the velocity is weak and the exponent α close to 1. All the
characteristics with α < 1 have a threshold value decreas-
ing while α becomes closer to 1. For α > 1, one should
recover an ohmic regime at low velocities. The charac-
teristics for α = 1.3 are compatible with such an ohmic
response, but fluctuations from one run to another remain
important. This is probably a consequence of the infinite
mean squared value of the waiting times when v → 0

In log-log coordinates, the v − F curves are concave,
and seems at first glance to end at a threshold value
F (v → 0) whereas in linear coordinates, at the opposite,
they are convex. Among the curves known to change
their convexity when the axes are logarithmically grad-
uated, one finds for example the celebrated stretched ex-
ponentials v = v0 exp[−(fc/f)γ ] occurring in some glassy
creep cases [9]. For α = 0.5 such a functional form fits
well the intermediate regime 10−4 < v < 10−1 with
γ ∼ 2.8 ± 0.1, but does not describe anymore the slower
regime v < 10−4. This latter case is better fitted by a
threshold characteristics Fc + (F − Fc)

β , β = 2.1 (over
only 1 decade).

One can roughly say that the v−F curve, for α = 0.5,
has a threshold value Fc with a force F which does not
vary by more than 12% over 2 decades. This is enough
to discard the mean field description mentioned above
(Eq. (19)). The other values of α = 0.7; 0.9 exhibits a
similar threshold force, but as α becomes closer to 1, it
is more and more difficult to get a good, well converged
value for the force at weak velocity and the fit with the
stretched exponential becomes poor.

One can account for the existence of the quasi-
threshold behaviour of the v − F curve (i.e. up to loga-

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Spring extension l(t).

The area under the curve is 1.

0.0 5.0
10

-10

10
-5

10
0

Fig. 5. The histogram of spring lengths L(t) (= βkdl(t)/2)
does not center around 0, even for a vanishing velocity (here
v = 10−6). The inset shows the histogram with a logarithmic
vertical axe.

rithmic factors) with a simple argument. The distribution
of waiting times is a broad power law distribution cut for
times greater than ∼ d/v. The contribution of large wait-
ing times τ ∼ d/v represents a finite ratio of the total
sum t =

∑n
i=1 τi. Such waiting times correspond to a fi-

nite value for the spring extension kvτ , and occur at a
constant rate. As they are not balanced by any negative
contribution, the resulting mean spring extension remains
finite. Figure 5 confirms this scenario. The histogram for
the variable li remains asymmetric, even for a vanishing
velocity, leading to a constant friction force. The “mean-
field” approach fails because it relies on the existence of a
typical value F for the force, vanishing with v, in contra-
diction with Figure 5.

It is interesting to notice that the mean-field procedure
leads to a (wrong) power law creep at low velocity. Such
power laws have been found by Horner in the mean-field
theory of a particle in a short range correlated disorder
[15]. Whereas it is a rather different problem, where ageing
comes from slow relaxation in a high dimensional phase
space, and not from any barrier mechanism (Sect. 2.1),
we emphasize that both mean-field approaches lead to a
power law for v → 0. One can suspect the corrective terms
to the above mean-field theory (which contain all thermal
activation effects) to modify the algebraic creep into a
threshold, like here.

Anyway, in every physical case, it must exist a huge but
finite equilibration time teq, at which the effective barrier
H stops increasing. The above threshold characteristics
must match with a slow thermally activated ohmic regime
for velocities v ≤ d/teq.
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5 Velocity induced fluctuations

5.1 A stepwise potential

The necessary and sufficient condition for the existence of
an ohmic regime at low velocity is that the mean trap-
ping time 〈τ〉 remains finite. This is because the effective
“viscosity” η = limv→0 F/v scales like 〈τ〉. At the oppo-
site, 〈τ〉 =∞ implies a sublinear or “creep” regime in the
v − F characteristics. This latter can always be written:

F = ηv, (20)

where η depends on F or on v according to the friction
experiment considered. When using a time-dependent po-
tential H, one can generate a distribution of waiting times
strongly dependent on v, with consequently, a non con-
stant mean pinning time 〈τ(v)〉, decreasing with v.

WheneverH remains bounded, one expects a crossover
between the strong velocity regime involving H(τ ' 0)
and the low velocity regime depending on the whole range
τ ∈ [0,∞[. Moreover, a detailed study of the fluctuations〈
l2(t)

〉
of the particle’s position turns out to be very in-

structive and reveals some unexpected features.
In order to make apparent the effects of a non-constant

H function, I have introduced a decreasing step function.
Such a sharp behaviour for H should make the crossover
well contrasted. This is done with the escape rate:

w0
tot =

ω1 for τ ∈ [0, ts]

ω2 for τ ∈ [ts,∞[
, (21)

where ts is the arbitrary position of the step. The Π(t)
function (5) and its reciprocal Π−1 can be computed ex-
actly, providing an easy numerical generation of waiting
times. Π(t) equals:

t < ts: exp
[ω1

V
(sh(L)− sh(L+ V t))

]
,

t > ts: exp

[
ω1

V
sh(L) +

ω2 − ω1

V
sh(L+ V ts)

−
ω2

V
sh(L+ V t)

]
. (22)

5.2 The enhancement of fluctuations

The mean square value is computed and compared with
the equilibrium one, given by the energy equipartition the-
orem k

〈
l2(t)

〉
= T , where k denotes the spring stiffness.

In Figure 6 the ratio ϕ = k
〈
l2(t)

〉
/T is plotted for the

special choices ω1 = 1, ω2 = 0.01(= 1% ω1), ts ranging
from 0.5 to 7. The results are compared with the constant
H cases A: w0

tot = ω1 and B: w0
tot = ω2. The step func-

tion case S interpolates between these two static pinning
potential cases. Thus, one expects the results for S to fall
in between the two extreme cases A and B.

The v − F characteristics behaves in this way (see
Fig. 7). Whereas the constant w0

tot cases A and B exhibits
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rium fluctuations. The stepwise H cases S lead to a maximum
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by φ ' 1 (not on this picture). The inset shows the product
vmaxts vs. ts, which has a constant value ∼ 0.33.
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Fig. 7. Comparison of the velocity force characteristics, be-
tween the constant w cases A and B, and the stepwise w cases
S. The time ts of the step ranges from 0.5 to 5.

fluctuations very close to equilibrium ones, regardless to
the value ω, the stepwise situation S shows a maximum
for an intermediate regime centered around t−1

s . Fluctu-
ations are enhanced with a factor 3 or 4, before reaching
their near equilibrium value at high velocities (Fig. 6).

The value ϕ ' 1 at high velocities suggests a decou-
pling between translation motion and fluctuations, similar
to the one due to the galilean invariance, in the disor-
derless case. This is reminiscent from a well known result
about a fast particle moving on a random potential. When
considering a particle driven at high velocity, with a force
greater than the critical one, the pinning potential plays
only a perturbative role. The random pinning force acts
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Fig. 8. The distribution of spring lengths L(t) is a Gaussian
at low and high velocities and is stretched at intermediate ve-
locities.

like a Langevin noise and leads to an effective “shaking
temperature” scaling like the inverse velocity 1/v (as far
as a single particle is considered) [17].

The effect of fluctuations is thus maximal at intermedi-
ate velocities. In the context of a friction experiment, such
anomalous fluctuations are reminiscent of “stick-slip” phe-
nomena. On the other hand, in the physical case where
the spring potential mimics the elastic interactions be-
tween particles, a strong fluctuation regime indicates that
the motion occurs with strong deformations, with a possi-
ble breakdown of the elastic regime towards a plastic one.
At the opposite, at weak or large velocities, the motion
of the particles may be coherent, within an homogeneous
flow [17] (two neighbouring particles remain close for a
long time). The onset of such a “plastic flow” should oc-
cur when the amount of fluctuations

〈
x2
〉

reaches a crit-
ical value like in the celebrated Lindemann criterion for
melting.

Figure 8 shows histograms for weak v = 10−5, inter-
mediate v = 0.5 and high velocity v = 2. The step occurs
at ts = 1. ϕ ' 1 corresponds to a Gaussian shape of the
l(t) distribution, ϕ > 1 coincides with an asymmetric dis-
tribution for l(t), with a tail on the right, related to large
values of l. The presence of such strong fluctuations re-
quires a high enough velocity, able to “convert” a long
pinning time into a large value of l. At the other extreme,
if v is too large, the friction force is higher than the critical
force, and the pinning is no more efficient. The effect is
maximal for 0.32 < vts < 0.35.

6 Conclusion

In this paper, a general stochastic process has been de-
fined, which allows dynamical pinning effects, by introduc-
ing time-dependent barriers. The model has first been spe-
cialized to generate power-law distributed waiting times.
The case of a particle driven by a spring has been inves-
tigated and compared to the previously known constant

driving force case. The sublinear drift of the latter case
is found to have a counterpart which in the present study
appears as a finite threshold for the friction force, even for
vanishing velocities. A naive mean-field approach fails in
describing the velocity-force characteristics, showing the
prominent role of large waiting times, even within a dis-
tribution cut-off by the drift motion. The analogy with
the D =∞ “mean field” result suggests that the finite di-
mension corrections could drive the power-law creep into
a threshold characteristics, ultimately linear at very low
velocities if the distribution of waiting times is cut by size
effects.

Then, we have investigated the consequences of a time
dependent pinning potential concerning the fluctuations
in the particle position. It has been achieved with a sharp
step profile for the time dependent barrier. Fluctuations
are strongly enhanced at an intermediate velocity regime.
This phenomenon is important in various physical cases
where the simple model presented here applies and de-
serves more investigations.

More generally, this model provides a general frame-
work in order to test the equivalence between applied force
and applied velocity in a friction experiment, with pres-
ence of “surface ageing” and at a scale where the temper-
ature is a relevant parameter.

I thank J.P Bouchaud, A.Valat, J. Farago, J-L. Gilson and
D. Feinberg for fruitful discussions, and D. Feinberg especially
for a critical reading of the manuscript. I am indebted to W.
Krauth for his lecture about Monte-Carlo methods at Beg
Rohu Summer School of Physics (France) 1996.

Appendix: Random generation of waiting
times

Given a random number r taken from a uniform distri-
bution over [0, 1], the corresponding waiting time τ is
Π−1(r), with Π−1(Π(s)) = s and Π defined by (5). As
the integration cannot be – in the general case – performed
analytically, a direct evaluation of τ requires to find nu-
merically the root of a function defined by a quadrature.
Independently, convergence requires many millions (107

to 108) numbers τi at low velocities, excluding any direct
computation scheme for Π−1.

It’s natural to look for asymptotic approximations
of the integral. First, one notices that the integrand
w0
tot(τ)ch(V t+L) has at least two very different time scales

ω−1
1 and V −1.

Let us detail the particular case αch(V t + L)/(ατ1 +
t). On the one hand, if V t � 1, the integral becomes

ch(L)
∫ t

0
αds/(ατ1 + s), leading to:

τ(r) = ατ1

[
exp

(
−

ln(r)

α ch(L)

)
− 1

]
. (23)

On the other hand, V t ≥ 1 describes situations where
the force kl(t) approaches the critical depinning value.
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It’s very unlikely to find high value L � 1 or negative
L � −1. In order to cover the range V t ' 1, Π−1

has been tabulated, by a direct numerical calculation,
for a grid in the plane (L, lnV ) with variable L between
−3 < L < 5 ; ∆L = 0.1 and variable V , 10−8 < V
< 1 with 20 values following a geometrical sequence. At
each point of the grid Π−1(r) is approximated with a
Tchebitchev polynomials approximation, by keeping the
30 first coefficients.

When a couple (L, lnV ) not on the grid is required,
its Tchebitchev coefficients are linearly interpolated. The
conversion τ(r) is reduced to a fast polynomial evaluation.

The two previous approximations match fine for V t '
0.01, and were actually used in the simulation.
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